bamymih (bamymih) wrote,
bamymih
bamymih

Categories:

Новый алгоритм обучения расширит область применения ИИ





Высокая энергозатратность процесса тренировки искусственных нейронных сетей является одним из главнейших препятствий к широкому использованию искусственного интеллекта (ИИ), особенно, в мобильных устройствах.

Новый подход к решению этой проблемы, воплощённый исследователями из Технического университета Граца (TU Graz) в алгоритме под названием e-prop, основан на том, как функционирует самый эффективный нейрокомпьютер — человеческий мозг. Биологические нейроны посылают короткие электрические импульсы (спайки) только когда это абсолютно необходимо, это одна из причин, почему при вычислительной мощности, сопоставимой с суперкомпьютером, мозг потребляет в миллион раз меньше энергии.

Вольфганг Маасс (Wolfgang Maass) и Роберт Легенштейн (Robert Legenstein) из Института теоретической информатики в TU Graz, который также является участником европейской инициативы Human Brain Project, используют в своей модели спайки для коммуникаций внутри искусственной нейронной сети. Спайки становятся активными только тогда, когда они необходимы для обработки информации в сети. Обучение представляет собой особую проблему для таких менее активных сетей, поскольку требуются более длительные наблюдения, чтобы определить, какие нейронные соединения улучшают производительность сети.

Информация о каждом использовании таких соединений документируется в соответствующем нейроне, вместо того, чтобы пересылаться на удалённый сервер ЦОД. Такая децентрализованная архитектура, скопированная с человеческого мозга, решает проблему избыточного использования офлайнового хранилища — недостаток других известных алгоритмов.

e-prop работает полностью в режиме онлайн и не требует отдельной памяти даже при реальной работе, что делает обучение намного более энергоэффективным. По информации его разработчиков, e-prop примерно такой же мощный, как самые лучшие и самые сложные другие известные методы обучения. Подробности опубликованы в научном журнале Nature Communications.

Маасс и Легенштейн надеются, что e-prop ускорит разработку нового поколения мобильных вычислительных систем, которые не нуждаются в программировании, а учатся в соответствии с моделью человеческого мозга и, таким образом, адаптируются к постоянно меняющимся требованиям. Цель состоит в том, чтобы исключить из процесса обучения облако, эффективно интегрировав большую часть способности к обучению в компоненты мобильного оборудования.

Авторы уже работают над интеграцией е-prop в нейроморфкую систему SpiNNaker Манчестерского университета и в следующую модификацию нейроморфного чипа Loihi корпорации Intel.

Оригинал взят у biboroda в Новый алгоритм обучения расширит область применения ИИ
Subscribe

  • Sada Bike: велосипед в рюкзаке

    Складные велосипеды стали популярными в последнее время, но это и неудивительно, ведь они экономят действительно много места, их стало возможны…

promo veldyaksov april 6, 22:40 3
Buy for 20 tokens
Давно знаю про концепцию делить аудиторию по полу, возрасту, прочим соц. демографическим признакам, но никогда не получалось применить её и получить измеримый результат (разве что гипотезы в таргетированной рекламе). ⠀ И тут я увидел модель, о которой хочу рассказать. ⠀ Например, мы покупаем сим…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 0 comments